Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Diagnostics (Basel) ; 12(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2163266

RESUMEN

Microbiological diagnosis by using commercial multiplex quantitative PCR systems provides great advantages over the conventional culture. In this work, the Biofire FilmArray Pneumonia Panel Plus (FAPP+) was used to test 144 low respiratory tract samples from 105 COVID-19 patients admitted to an Intensive Care Unit (ICU), detecting 78 pathogens in 59 (41%) samples. The molecular panel was evaluated by using the conventional culture (CC) as comparator, which isolated 42 pathogens in 40 (27.7%) samples. The overall percentage of agreement was 82.6%. Values of sensitivity (93%), specificity (62%), positive predictive value (50%), and negative predictive value (96%) were obtained. The mean time elapsed from sample extraction to modification of antibiotic treatment was 7.6 h. A change in antimicrobial treatment after the FAPP+ results was performed in 27% of patients. The FAPP+ is a highly sensitive diagnostic method that can be used to significantly reduce diagnostic time and that allows an early optimization of antimicrobial treatment.

3.
Clin Epigenetics ; 13(1): 187, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1526657

RESUMEN

BACKGROUND: SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors for entry into cells, and the serine protease TMPRSS2 for S protein priming. Inhibition of protease activity or the engagement with ACE2 and NRP1 receptors has been shown to be an effective strategy for blocking infectivity and viral spreading. Valproic acid (VPA; 2-propylpentanoic acid) is an epigenetic drug approved for clinical use. It produces potent antiviral and anti-inflammatory effects through its function as a histone deacetylase (HDAC) inhibitor. Here, we propose VPA as a potential candidate to tackle COVID-19, in which rapid viral spread and replication, and hyperinflammation are crucial elements. RESULTS: We used diverse cell lines (HK-2, Huh-7, HUVEC, Caco-2, and BEAS-2B) to analyze the effect of VPA and other HDAC inhibitors on the expression of the ACE-2 and NRP-1 receptors and their ability to inhibit infectivity, viral production, and the inflammatory response. Treatment with VPA significantly reduced expression of the ACE2 and NRP1 host proteins in all cell lines through a mechanism mediated by its HDAC inhibitory activity. The effect is maintained after SARS-CoV-2 infection. Consequently, the treatment of cells with VPA before infection impairs production of SARS-CoV-2 infectious viruses, but not that of other ACE2- and NRP1-independent viruses (VSV and HCoV-229E). Moreover, the addition of VPA 1 h post-infection with SARS-CoV-2 reduces the production of infectious viruses in a dose-dependent manner without significantly modifying the genomic and subgenomic messenger RNAs (gRNA and sg mRNAs) or protein levels of N protein. The production of inflammatory cytokines (TNF-α and IL-6) induced by TNF-α and SARS-CoV-2 infection is diminished in the presence of VPA. CONCLUSIONS: Our data showed that VPA blocks three essential processes determining the severity of COVID-19. It downregulates the expression of ACE2 and NRP1, reducing the infectivity of SARS-CoV-2; it decreases viral yields, probably because it affects virus budding or virions stability; and it dampens the triggered inflammatory response. Thus, administering VPA could be considered a safe treatment for COVID-19 patients until vaccines have been rolled out across the world.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/prevención & control , Epigénesis Genética/fisiología , Neuropilina-1/genética , Receptores Virales/efectos de los fármacos , Ácido Valproico/farmacología , Enzima Convertidora de Angiotensina 2/efectos de los fármacos , Antivirales/farmacología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/genética , Humanos , Neuropilina-1/efectos de los fármacos , SARS-CoV-2
4.
Intensive Care Med Exp ; 8(1): 68, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: covidwho-940038

RESUMEN

BACKGROUND: Intensive care unit workers are at high risk of acquiring COVID-19 infection, especially when performing invasive techniques and certain procedures that generate aerosols (< 5 µm). Therefore, one of the objectives of the health systems should implement safety practices to minimize the risk of contagion among these health professionals. Monitoring environmental contamination of SARS-CoV-2 may help to determine the potential of the environment as a transmission medium in an area highly exposed to SARS-CoV-2, such as an intensive care unit. The objective of the study was to analyze the environmental contamination by SARS-CoV-2 on surfaces collected in an intensive care unit, which is dedicated exclusively to the care of patients with COVID-19 and equipped with negative pressure of - 10 Pa and an air change rate of 20 cycles per hour. Furthermore, all ICU workers were tested for COVID-19 by quantitative RT-PCR and ELISA methods. RESULTS: A total of 102 samples (72 collected with pre-moistened swabs used for collection of nasopharyngeal exudates and 30 with moistened wipes used in the environmental microbiological control of the food industry) were obtained from ventilators, monitors, perfusion pumps, bed rails, lab benches, containers of personal protective equipment, computer keyboards and mice, telephones, workers' shoes, floor, and other areas of close contact with COVID-19 patients and healthcare professionals who cared for them. The analysis by quantitative RT-PCR showed no detection of SARS-CoV-2 genome in environmental samples collected by any of the two methods described. Furthermore, none of the 237 ICU workers was infected by the virus. CONCLUSIONS: Presence of SARS-CoV-2 on the ICU surfaces could not be determined supporting that a strict cleaning protocol with sodium hypochlorite, a high air change rate, and a negative pressure in the ICU are effective in preventing environmental contamination. These facts together with the protection measures used could also explain the absence of contagion among staff inside ICUs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA